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Abstract 
In this work, mathematical modelling of flow injection analysis is presented. The flow injection analysis (FIA) and sequential flow 
injection analysis (SIA) manifolds are studied. The mathematical model comprises a system of partial differential equations: i) the 
Navier-Stokes equation for incompressible fluid flow and ii) the diffusion-convection equation. This system is solved numerically 
and the resulting profiles of fluid velocity and the concentrations of the species of interest in space and time are obtained. This in turn 
enables us to obtain signal vs. time curves. 
The influence of different parameters, such as fluid velocity, diffusion coefficients and the geometry of the system, on the shape of 
the signal vs. time curves is analyzed. 
The numerical simulation results are compared with the experimental data. 
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1. Introduction 
 

Flow injection analysis (FIA) is a versatile technique for 
manipulation of the solution/sample/reagent followed by 
different detection methods. It was introduced in the current 
form in mid 1970s by Ruzicka and Hansen [1] and has since then 
become a well established analytical method, used in many 
fields: water analysis, biotechnology, process analysis, life 
science etc. 

It offers high degree of automation and reproducibility at a 
relatively low cost, while it’s sensitivity, selectivity and 
detection limit depend mainly, if not entirely, on the kind of 
detection method used. 

FIA systems can also be miniaturized, which offers various 
advantages, e.g. portability, reduction of the amount of sample 
and reagents used and increased speed of analysis. 

Use of modelling tools is helpful in developing general design 
rules and speeds up the development of flow injection systems. 
However, the first step before using a mathematical design tool 
is to validate the numerical approach with suitable experimental 
data from an existing FIA system. In this way, the numerical 
results obtained for a simulated system can help to optimize new 
FIA systems.  

According to Kolev’s excellent and extensive review [2], 
mathematical models of flow injection (FI) manifolds fall into 
two main classes: “black box” and analytical-experimental 
models. Examples of “black box” models are regression 
equations, neural networks, impulse response functions, and 
statistical moments. The two main categories of analytical-
experimental methods are the probabilistic (random walk) and 
deterministic models. The deterministic models fall into several 
categories, such as lumped parameter and distributed parameter 
methods. The model used in this work belongs to the distributed 
parameter models and is more specifically a uniform dispersion 
model. 
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2. Theoretical 
 
2.1 Physicochemical model 
 
The schematic presentation of the model is shown in Figure 1. 

The fluid carrier of density ρ flows with the velocity v through a 
straight tube of the radius R. 

 

Carrier CarrierSample

 
Figure 1. Schematic representation of the used model. 

 
At the time t = 0, the sample of volume Vv is injected into the 

carrier stream. In the case of FI, the flow direction is constant (to 
the right). In the case of sequential injection (SI), the initial flow 
direction is to the left. After a certain time the flow is reversed to 
the right. 

 
2.2 Mathematical model 
 
The dynamic behaviour of the fluid is modelled using the 

Navier-Stokes’ equations for incompressible fluid: 
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and the equation for the transport of chemical species by 
diffusion and convection: 
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where t is time [s], ρ fluid density [kg·m-3], p pressure [Pa], μ 
dynamic viscosity [kg·m-1·s-1], v velocity vector [m·s-1], c 
concentration [mol·m-3], D diffusion coefficient [m2·s-1]. 

Because v, p and c are functions of both space and time, eqs. 
(1-3) form a system of nonlinear partial differential equations. 
Such a system cannot be solved analytically for a general case. 
Therefore, numerical methods have to be used. 

 
1.3 Numerical implementation 
 
Two commercially available programs were used to solve the 

problem. 
1.3.1. Femlab 
Femlab v. 2.3 (Comsol AB) is an interactive environment for 

modelling and solving scientific and engineering problems based 
on partial differential equations using the finite element method 
(FEM). 

Because of the big differences in radial and axial dimensions  
(r = 0.76 mm and L = 4 m), the problem is scaled down 100 
times in the axial dimension. The resulting domain has the 
dimensions 0.00076 m in the Y direction and 0.04 m in the X 
direction. The applied mesh consists of 9984 elements. 

1.3.2. Fluent 
Fluent (ANSYS, Inc.) is a general-purpose CFD code based on 

the finite volume method. 
Computational Fluid Dynamic simulations are performed on 

computational meshes consisting of a number of connected 
computational cells, representing the physical volume to be 
studied (Fig. 2). The total number of cells in the mesh used in 
this study was around 90.000. The mesh is highly resolved along 
the tube wall to be able to consider possible wall effects. The 
sample section and the part of the mixing section behind the 
detector plane are meshed with a higher resolution.  

 
 

Figure 2. Left: Computational mesh representing the physical 
dimensions of the Flow Injection Analysis (FIA) system studied 
Right: Cross section through the computational mesh in the 
inflow section  

 
Each simulation consists of two parts: i) a steady state 

calculation of the carrier flowing through the tube and ii) a time-
dependent calculation of the sample flowing and dispersing in 
the carrier together with a recording of the response curve at the 
detector plane. 

 
1.4. Construction of a tracer curve 
The example tracer curve was constructed using D= 10-8 m2 s-1, 

and flow rate 50 μL/s. 
 
1.4.1. Velocity of the fluid 
In order to construct a tracer curve the velocity of the fluid was 

first calculated using the Navier-Stokes equation (Eqs. 1-2). Fig. 
3 shows the example velocity profile of the fluid in the tube and 
the cross section of the tube at a given distance from the point of 

sample injection. As can be seen in Fig. 3, even after a very short 
time (0.5 seconds) the flow velocity already has a fully 
developed parabolic profile. 
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Figure 3. Top: Carrier velocity surface plot at 0.5 s; the darker 
the colour, the slower the velocity. Bottom: Cross section plot at 
0.5 m from the injection point and at 0.01 (1), 0.02 (2) and 0.5 
(3) seconds. 

 
1.4.2. Concentration profiles 
After calculating the velocity profiles, we can insert them into 

the diffusion-convection equation to obtain the concentration 
profiles at any given time and in any place in the space. This is 
illustrated in Fig.4, where the dispersion of the injected sample is 
shown at selected time after injection. 

 

 
 

Figure 4. Concentration profiles of an injected sample plug at 
(from top to bottom) 0, 0.4, 0.8, 2, 4, 6, 8, 10 s. 

 
The corresponding cross section plot of the concentration 

profile of the sample plug at a fixed distance (e.g. in the 
detector) from the injection point is shown in Fig. 5. We can see 
in Fig. 5 (top) that as the time progresses, the concentration 
“seen” by the detector increases and reaches a maximum value. 
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As the tail of the sample plug passes the observation point (the 
detector), the concentration gradually decreases and the curves 
of the cross section plot change accordingly (bottom). 
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Figure 5. Concentration profiles at different times at a fixed 
distance (e.g. in the detector) from the injection point. Top: 
Increasing concentration. Curves 1–8 were obtained at 5.0, 5.1, 
5.2, 5.3, 5.4, 5.5, 5.6, 5.8 seconds after sample injection. 
Bottom: Decreasing concentration. Curves 1-8 were obtained at 
5.8, 6.0, 6.5, 7.5, 8.5, 9.5, 12.0 and 15.0 seconds after sample 
injection. The figure was divided into two parts for the sake of 
clarity. 
 
2.3. Tracer Curves 
 

Since in the experimental part the spectrophotometric detection 
method is used, the simulation procedure must also reflect this 
fact. According to Lambert-Beer’s law, the absorbance is 
linearly dependent on the concentration of the determined 
substance. But because the concentration profile along the radial 
dimension is not constant, we have to integrate the absorbance 
over the light path. 
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where A is the absorbance, ε is the molar extinction coefficient, 
and c(y) is the concentration of the determined substance in the 
radial direction. The tracer curve is shown in Fig. 6. 
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Figure 6. Tracer curve obtained using D= 10-8 m2 s-1, and flow 

rate 50 μL/s. 
 
 
 

3. Experimental 
 

3.1. Chemicals 
 
A solution of bromothymol blue (BTB) was prepared by 

adding 0.4 g of BTB to 25 ml 96% ethanol and diluting the 
solution to 100 ml with 0.01 M sodium tetraborate. The solution 
was diluted further, making the final BTB concentration 0.016 
g/l, and was used in the experiments where tracer curves were 
recorded. Distilled and deionized water was used for dilution and 
as the carrier solution in the SIA and FIA systems throughout the 
experiments. 

 
3.2. Equipment 
 
The SIA experiments were performed using a sequential 

injection flow system, SIAmateTM analyser from Arctic 
Instruments Oy Ab (Turku, Finland) [3] shown in Fig. 7. The 
instrument has a zoomable LED based photometer with a 0.76 
mm light path. The absorbance was measured at 635 nm in the 
tracer experiments. The AnalySIA software was used to control 
the experimental parameters. 

The volume of the SIA syringe pump was 2.5 ml and the 
volume of the sample loop was 65 µl. The length of the tubing 
going from the sample loop to the detector was 25, 50 and 100 
cm. The flow rate was varied between 25, 33, 40 and 50 µl/s. All 
tubing used in the system was made of polytetrafluoroethylene 
and had an inner diameter of 0.76 mm. 

FIA experiments were carried out using FIAlab-2000, a 
manually operated solution handling system with a four channel 
peristaltic pump and a two-position six-port injection valve. 
Because the timing and reproducibility of our FIA system was 
too poor to be used in these applications, FIAlab-2000 was 
connected to the SIA system as shown in Figure 8. With this set-
up we were also able to use the more accurate SIA detector. 
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Figure 7. Schematic picture of the flow injection system used in 
the experiments. SP is the SIA syringe pump, PP the FIA 
peristaltic pump and D is the detector. 

 
3.3.Procedure 
 
The tracer measurements were performed according to the 

following procedure: (1) The FIA pump was started and the 
sample loop was filled with the BTB solution. (2) The FIA pump 
was stopped. (3) The FIA valve was turned to load position. (4) 
The SIA measurement cycle was started. (5) The SIA syringe 
was filled with carrier solution. (6) The SIA valve was turned to 
detector position. (7) While emptying the SIA syringe, the 
absorbance was recorded in the detector unit. 

Steps 1-4 were done manually and steps 5-7 were automatic. 
The median values of at least three repetitions were used for 
each experiment. 

 
4. Results and discussion 

 
The most important causes of radial dispersion in flow-

injection systems are molecular diffusion, turbulent flow and 
secondary flow. The extent of radial mixing primarily depends 
on whether the flow is laminar or turbulent. At low values (less 
than 2100) of Reynolds number, Re = 2Rvρ/μ, the flow is 
usually assumed to be laminar.  

Because the dimensions and flow rates used in FI (Re < 130), 
all the cases of FI considered here (provided that the tube is not 
coiled) should fall very easily within the range of laminar flow 
and, consequently, the radial dispersion should be governed by 
diffusion alone. 

Fig. 8 illustrates the influence of (the magnitude of) the 
diffusion coefficient on the shape of the tracer (FIA) curve. 

The reduced time is defined as τ = D·t/R2. For small values of 
reduced time the radial transfer is negligible and the sharp rise of 
the peak followed by an exponential decay is observed. For 
medium values of τ a double-humped peak is observed. For big 
values of τ a nearly Gaussian, slightly skewed peak is observed.  

The obtained results correspond well to the literature 
observations as presented by Vanderslice et al. [4]. 

 

 

 

 

 
 

 

 

 

 
Figure 8. Influence of different diffusion coefficient values on 

the shape of the tracer curve. The value of the diffusion 
coefficient used was (from top to bottom) 10-7, 10-8, 10-9, 10-10 
m2 s-1. The corresponding τ values are: 7 0.7, 0.07 0.007 
respectively. 

 
In order to examine the applicability of the used model, the 

following FI systems were simulated: a) micro-flow system b) 
FIA system c) SIA system. 

 
4.1. μ-FIA 
 
Figure 9 shows the theoretical curves calculated according to 

our model using the physical parameters of the micro-FIA 
system described by Van Akker[5,6]. Our results agree well with 
van Akker’s experimental data and theoretical simulations. 
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Figure 9. Simulated curves for the μ-FIA-system described by 
Van Akker[5,6]. The experimental parameters, i.e. the flow rates 
(from left to right: 5, 4, 3 and 2 µl/min) and the value of the 
diffusion coefficient (3·10-10 m2 s-1) are the same as those used 
by Van Akker. 

 
4.2. FIA and SIA 
 

Figures 10 and 11 show the comparison of theoretical 
predictions with the results from experiments with different flow 
rates for the FIA system described in the experimental part.  
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Figure 10. Comparison of theoretical and experimental curves 
for FIA system. The experimental flow rate was 50 μL/s. The 
diffusion coefficient value used in the simulation was 10-8 m2/s. 
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Figure 11. Comparison of theoretical and experimental curves 
for FIA system. The experimental flow rate was 25 μL/s. The 
diffusion coefficient value used in the simulation was 10-8 m2/s. 

 
The obtained results show good agreement between 

experimental and theoretical curves. However, the diffusion 
coefficient for which the best agreement was obtained was of the 
order of magnitude of 10-8 m2/s. This value is much greater than 
the experimental values for BTB in water solutions given in the 
literature which is of the order of magnitude of 10-10 m2/s. 
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Figure 12. Comparison of theoretical and experimental curves 
for SIA system. The experimental flow rate was 50 μL/s. The 
diffusion coefficient value used in the simulation was 10-8 m2/s. 

 
Similar results were obtained for the SIA system with the flow 

rate 50 μL/s (Fig. 11) as well as for FIA and SIA systems for 
other flow rates (33 and 40 μL/s). 

All the systems investigated in this study had a very low 
Reynolds number. For FIA with the flow rate V=50 μl/s, Re = 84 
and for μ-FIA with V= 0.033 μl/s, Re = 0.3. Consequently, in 
both cases the flow should be fully laminar. 

However, a comparison between the experimental and 
theoretical results proves that this is not the case. For the μ-FIA 
system considered in this work, a physically and experimentally 
sound value of the diffusion coefficient (~10-10 m2/s) can be used. 

In contrast, to obtain an adequate agreement for the FIA and 
SIA systems, a diffusion coefficient value of ~10-8 m2/s must be 
used, a fact which suggests that in this case, the flow is not 
completely laminar. Additional factors beside the molecular 
diffusion obviously contribute to the faster transport in the radial 
direction. 

We propose the use of the term “conditional” diffusion 
coefficient for a given experimental system to account for the 
additional radial mixing.  

 
5. Conclusions 

 
It is commonly accepted that in most FI systems the flow is 

entirely laminar and that the diffusion coefficient provides the 
main contribution to the radial mixing. We examined this 
claim using the Navier-Stokes and diffusion-convection 
equations. The theory was checked against the experimental 
data. 

For μ-Fia systems, the physically relevant diffusion 
coefficient value of ca 10-10 m2/s provided good agreement 
between theory and experiment. For classical FIA systems, a 
much higher diffusion coefficient value of ca 10-8 m2/s had to 
be used. 

There are some additional contributions to the radial mixing. 
Consequently, in this case, the use of the term “conditional 
diffusion coefficient“ is proposed. 
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